中国呼吸与危重监护杂志

中国呼吸与危重监护杂志

鼾症患者中阻塞性睡眠呼吸暂停低通气综合征的筛查及危险因素分析

查看全文

目的 通过数据分析建立阻塞性睡眠呼吸暂停低通气综合征(OSAHS)的筛查模型,探讨 OSAHS 的危险因素。 方法 连续纳入在自贡市第四人民医院睡眠监测室行多导睡眠监测的 558 例患者作为研究对象,其中单纯鼾症组 163 例,OSAHS 组 395 例。先进行单因素和多因素分析,初步找出 OSAHS 的危险因素,然后进行二元 Logistic 回归分析并建立模型,最后通过联合预测因子的受试者工作特征(ROC)曲线,对筛查模型进行评价。 结果 OSAHS 筛查模型建立为 X=–10.286+0.280×体重指数+1.057×打鼾程度+1.124×性别+0.085×Epworth 评分+0.036×年龄。其中,对于性别,男性取值 1,女性取值 0。当 X>1.123 时,即可预测 OSAHS,患病概率P=ex/(1+ex)。筛查模型的敏感性为 77.70%,特异性为 85.89%,ROC 曲线下面积为 0.890,95% 可信区间为(0.862,0.918)。 结论 在鼾症患者中,通过患者的打鼾程度、Epworth 评分和身体测量数据能有效预测和筛检 OSAHS 患者,OSAHS 筛查模型可运用于临床。

Objective To establish a screening model for obstructive sleep apnea hypopnea syndrome (OSAHS) through data analysis, and explore the risk factors of OSAHS. Methods A total of 558 patients who underwent polysomnography in the Sleep Monitoring Room of Zigong Fourth People’s Hospital were recruited in the study. Among them there were 163 cases in a snore group and 395 cases in an OSAHS group. Risk factors of OSAHS were screened by both univariate analysis and multivariate analysis, then the model was established by means of binary logistic regression analysis. Finally, the screening model was evaluated by receiver operating characteristic (ROC) curve of the combined predictive factor. Results The screening model of OSAHS was established as: X=–10.286+0.280×body mass index+1.057×snoring degree+1.124×sex+0.085×Epworth score+0.036×age. In this equation, sex value was 1 for men and 0 for women. If the value of X is higher than 1.123, it is likely that OSAHS would occur, and the probability (P)=ex/(1+ex). The sensitivity of the screening model was 77.70%, the specificity was 85.89%, the area under the ROC curve was 0.890, and the 95% confidence interval ranged from 0.862 to 0.918. Conclusion This study demonstrates that a screening model based on the snoring degree, Epworth score, and body measurement data is a valuable tool to predict and screen OSAHS in patients with snoring, and the screening model could be useful in clinical diagnosis of OSAHS.

关键词: 鼾症; 阻塞性睡眠呼吸暂停低通气综合征; 筛查; 危险因素

Key words: Snoring; Obstructive sleep apnea hypopnea syndrome; Screening; Risk factors

引用本文: 孙楷, 聂洪玉, 徐东兰, 刘泳, 马升军, 唐亮. 鼾症患者中阻塞性睡眠呼吸暂停低通气综合征的筛查及危险因素分析. 中国呼吸与危重监护杂志, 2019, 18(1): 26-30. doi: 10.7507/1671-6205.201805020 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Hiestand DM, Britz P, Goldman M, et al. Prevalence of symptoms and risk of sleep apnea in the US population: Results from the national sleep foundation sleep in America 2005 poll. Chest, 2006, 130(3): 780-786.
2. 葛瑞锋, 刘文君, 梅栩彬, 等. 青岛地区阻塞性睡眠呼吸暂停低通气综合征的患病率及影响因素的相关性分析. 中国耳鼻咽喉颅底外科杂志, 2009, 15(4): 272-275.
3. White DP. Sleep apnea. Proc Am Thorac Soc, 2006, 3(1): 124-128.
4. 何权瀛, 王莞尔. 阻塞性睡眠呼吸暂停低通气综合征诊治指南 (基层版). 中国呼吸与危重监护杂志, 2015, 14(4): 398-405.
5. Berry RB, Brooks R, Gamaldo CE, et al. The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications. VERSION 2.0. Darien IL: American Academy of Sleep Medicine, 2012: 16-58.
6. 中华医学会呼吸病学分会睡眠呼吸疾病学组. 阻塞性睡眠呼吸暂停低通气综合征诊治指南 (2011 年修订版). 中华结核和呼吸杂志, 2012, 35(1): 9-12.
7. Johns MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep, 1991, 14(6): 540-545.
8. 闫涵, 董霄松. 便携式睡眠监测代替多导睡眠监测诊断在我国广泛应用尚不成熟. 中华结核和呼吸杂志, 2014, 37(12): 947-948.
9. Seetho IW, Parker RJ, Craig S, et al. Obstructive sleep apnea is associated with increased arterial stiffness in severe obesity. J Sleep Res, 2014, 23(6): 700-708.
10. Daltro C, Gregorio PB, Alves E, et al. Prevalence and severity of sleep apnea in a group of morbidly obese patients. Obes Surg, 2007, 17(6): 809-814.
11. Shah N, Roux F. The relationship of obesity and obstructive sleep apnea. Clin Chest Med, 2009, 30: 455-465.
12. BaHammam AS, Pandi-Perumal SR, Piper A, et al. Gender differences in patients with obesity hypoventilation syndrome. J Sleep Res, 2016, 25(4): 445-453.
13. 王俊力, 夏进, 王菊芬, 等. 女性阻塞性睡眠呼吸暂停低通气综合征的危险因素及治疗现状分析. 四川大学学报 (医学版), 2011, 42(4): 535-539.
14. Gabbay IE, Lavie P. Age- and gender-related characteristics of obstructive sleep apnea. Sleep Breath, 2012, 16(2): 453-460.