中国呼吸与危重监护杂志

中国呼吸与危重监护杂志

慢性阻塞性肺疾病的发病机制研究进展

查看全文

引用本文: 李锋, 周新. 慢性阻塞性肺疾病的发病机制研究进展. 中国呼吸与危重监护杂志, 2019, 18(1): 88-92. doi: 10.7507/1671-6205.201803050 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
1. Buist AS, McBurnie MA, Vollmer WM, et al. International variation in the prevalence of COPD (the BOLD Study): a population-based prevalence study. Lancet, 2007, 370(9589): 741-750.
2. Vogelmeier CF, Criner GJ, Martinez FJ, et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report. GOLD Executive Summary. Am J Respir Crit Care Med, 2017, 195(5): 557-582.
3. Brusselle GG, Joos GF, Bracke KR. New insights into the immunology of chronic obstructive pulmonary disease. Lancet, 2011, 378(9795): 1015-1026.
4. Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol, 2016, 138(1): 16-27.
5. Eapen MS, Myers S, Walters EH, et al. Airway inflammation in chronic obstructive pulmonary disease (COPD): a true paradox. Expert Rev Respir Med, 2017, 11(10): 827-839.
6. Russell RE, Thorley A, Culpitt SV, et al. Alveolar macrophage-mediated elastolysis: roles of matrix metalloproteinases, cysteine, and serine proteases. Am J Physiol Lung Cell Mol Physiol, 2002, 283(4): L867-L873.
7. Belchamber KBR, Donnelly LE. Macrophage dysfunction in respiratory disease. Results Probl Cell Differ, 2017, 62: 299-313.
8. Tashkin DP, Wechsler ME. Role of eosinophils in airway inflammation of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis, 2018, 13: 335-349.
9. Grumelli S, Corry DB, Song LZ, et al. An immune basis for lung parenchymal destruction in chronic obstructive pulmonary disease and emphysema. PLoS Med, 2004, 1(1): e8.
10. Pridgeon C, Bugeon L, Donnelly L, et al. Regulation of IL-17 in chronic inflammation in the human lung. Clin Sci (Lond), 2011, 120(12): 515-524.
11. Vassallo R, Walters PR, Lamont J, et al. Cigarette smoke promotes dendritic cell accumulation in COPD; a Lung Tissue Research Consortium study. Respir Res, 2010, 11(1): 45.
12. Kanazawa H, Tochino Y, Asai K, et al. Simultaneous assessment of hepatocyte growth factor and vascular endothelial growth factor in epithelial lining fluid from patients with COPD. Chest, 2014, 146(5): 1159-1165.
13. Vallath S, Hynds RE, Succony L, et al. Targeting EGFR signalling in chronic lung disease: therapeutic challenges and opportunities. Eur Respir J, 2014, 44(2): 513-522.
14. Kirkham PA, Barnes PJ. Oxidative stress in COPD. Chest, 2013, 144(1): 266-273.
15. McGuinness AJ, Sapey E. Oxidative stress in COPD: sources, markers, and potential mechanisms. J Clin Med, 2017, 6(2): 21.
16. Piantadosi CA, Suliman HB. Mitochondrial dysfunction in lung pathogenesis. Annu Rev Physiol, 2017, 79: 495-515.
17. Ito S, Araya J, Kurita Y, et al. PARK2-mediated mitophagy is involved in regulation of HBEC senescence in COPD pathogenesis. Autophagy, 2015, 11(3): 547-559.
18. Ahmad T, Sundar IK, Lerner CA, et al. Impaired mitophagy leads to cigarette smoke stress-induced cellular senescence: implications for chronic obstructive pulmonary disease. FASEB J, 2015, 29(7): 2912-2929.
19. Meyer A, Zoll J, Charles AL, et al. Skeletal muscle mitochondrial dysfunction during chronic obstructive pulmonary disease: central actor and therapeutic target. Exp Physiol, 2013, 98(6): 1063-1078.
20. Liu SF, Kuo HC, Tseng CW, et al. Leukocyte mitochondrial DNA copy number is associated with chronic obstructive pulmonary disease. PLoS One, 2015, 10(9): e0138716.
21. MacNee W. Is chronic obstructive pulmonary disease an accelerated aging disease?. Ann Am Thorac Soc, 2016, 3(5): S429-S437.
22. Lange P, Celli B, Agustí A, et al. Lung-function trajectories leading to chronic obstructive pulmonary disease. N Engl J Med, 2015, 373(2): 111-122.
23. Tsuji T, Aoshiba K, Nagai A. Cigarette smoke induces senescence in alveolar epithelial cells. Am J Respir Cell Mol Biol, 2004, 31(6): 643-649.
24. López-Otín C, Blasco MA, Partridge L, et al. The hallmarks of aging. Cell, 2013, 153(6): 1194-1217.
25. Ojo O, Lagan AL, Rajendran V, et al. Pathological changes in the COPD lung mesenchyme-novel lessons learned from in vitro and in vivo studies. Pulm Pharmacol Ther, 2014, 29(2): 121-128.
26. Sohal SS. Epithelial and endothelial cell plasticity in chronic obstructive pulmonary disease (COPD). Respir Investig, 2017, 55(2): 104-113.
27. Sohal SS. Endothelial to mesenchymal transition (EndMT): an active process in chronic obstructive pulmonary disease (COPD)?. Respir Res, 2016, 17: 20.
28. Coll-Bonfill N, Musri MM, Ivo V, et al. Transdifferentiation of endothelial cells to smooth muscle cells play an important role in vascular remodeling. Am J Stem Cells, 2015, 4(1): 13-21.
29. Camicia G, Pozner R, de Larrañaga G. Neutrophil extracellular traps in sepsis. Shock, 2014, 42(4): 286-294.
30. Porto BN, Stein RT. Neutrophil extracellular traps in pulmonary diseases: too much of a good thing?. Front Immunol, 2016, 7: 311.
31. Storisteanu DM, Pocock JM, Cowburn AS, et al. Evasion of neutrophil extracellular traps by respiratory pathogens. Am J Respir Cell Mol Biol, 2017, 56(4): 423-431.
32. Liu T, Wang FP, Wang G, et al. Role of neutrophil extracellular traps in asthma and chronic obstructive pulmonary disease. Chin Med J (Engl), 2017, 130(6): 730-736.
33. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol, 2013, 200(4): 373-383.
34. Lau LF. CCN1/CYR61: the very model of a modern matricellular protein. Cell Mol Life Sci, 2011, 68(19): 3149-3163.
35. Cordazzo C, Petrini S, Neri T, et al. Rapid shedding of proinflammatory microparticles by human mononuclear cells exposed to cigarette smoke is dependent on Ca2+ mobilization. Inflamm Res, 2014, 63(7): 539-547.
36. Li CJ, Liu Y, Chen Y, et al. Novel proteolytic microvesicles released from human macrophages after exposure to tobacco smoke. Am J Pathol, 2013, 182(5): 1552-1562.
37. Kadota T, Fujita Y, Yoshioka Y, et al. Extracellular vesicles in chronic obstructive pulmonary disease. Int J Mol Sci, 2016, 17(11): 1801.
38. Kim YS, Choi EJ, Lee WH, et al. Extracellular vesicles, especially derived from Gram-negative bacteria, in indoor dust induce neutrophilic pulmonary inflammation associated with both Th1 and Th17 cell responses. Clin Exp Allergy, 2013, 43(4): 443-454.
39. Cloonan SM, Mumby S, Adcock IM, et al. The " Iron”-y of iron overload and iron deficiency in chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2017, 196(9): 1103-1112.
40. Ali MK, Kim RY, Karim R, et al. Role of iron in the pathogenesis of respiratory disease. Int J Biochem Cell Biol, 2017, 88: 181-195.
41. Chappell SL, Daly L, Lotya J, et al. The role of IREB2 and transforming growth factor beta-1 genetic variants in COPD: a replication case-control study. BMC Med Genet, 2011, 12: 24.
42. Zhou HX, Yang J, Li DX, et al. Association of IREB2 and CHRNA3/5 polymorphisms with COPD and COPD-related phenotypes in a Chinese Han population. J Hum Genet, 2012, 57(11): 738-746.
43. Yuan CH, Chang D, Lu GM, et al. Genetic polymorphism and chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis, 2017, 12: 1385-1393.
44. Deng XW, Yuan CH, Chang D. Interactions between single nucleotide polymorphism of SERPINA1 gene and smoking in association with COPD: a case-control study. Int J Chron Obstruct Pulmon Dis, 2017, 12: 259-265.
45. Wolf L, Herr C, Niederstrasser J, et al. Receptor for advanced glycation endproducts (RAGE) maintains pulmonary structure and regulates the response to cigarette smoke. PLoS One, 2017, 12(7): e180092.
46. Li Y, Cho MH, Zhou X. What do polymorphisms tell us about the mechanisms of COPD?. Clin Sci (Lond), 2017, 131(24): 2847-2863.