中国呼吸与危重监护杂志

中国呼吸与危重监护杂志

分泌型卷曲相关蛋白 1 在慢性阻塞性肺疾病气道重塑中的作用和机制

查看全文

目的 研究分泌型卷曲相关蛋白 1(SFRP1)在慢性阻塞性肺疾病(简称慢阻肺)气道重塑中的作用和机制。 方法 纳入 2014 年 6 月至 2016 年 6 月在江苏省人民医院确诊慢阻肺的稳定期患者 45 例,健康对照 21 例。采取酶联免疫吸附试验检测血清 SFRP1 的表达,采用蛋白印迹法检测人支气管上皮细胞(16HBE)的 SFRP1、上皮钙黏素(E-cadherin)及 α-平滑肌肌动蛋白(α-SMA)的表达。 结果 慢阻肺患者血清 SFRP1 水平较健康对照明显升高 [(80.65±15.01)pg/ml 比(23.89±2.59)pg/ml,P<0.05],慢阻肺患者血清 SFRP1 水平与肺功能(FEV 1、FEV 1%pred、FVC)呈负相关(相关系数 r 分别为 –0.368 9、–0.382 6、–0.417 3,P<0.05)。慢阻肺吸烟组患者血清 SFRP1 水平明显高于慢阻肺不吸烟组[(97.74 ± 21.95) pg/ml 比(52.51 ± 14.87)pg/ml,P<0.05]。香烟烟雾提取物可以刺激 16HBE 细胞表达 SFRP1,外源性 SFRP1 能下调 E-cadherin 的表达,并上调 α-SMA 的表达。 结论 SFRP1 可能通过调控支气管上皮细胞 E-cadherin 和α-SMA 参与慢阻肺气道重塑的形成。

Objective To study the effect of secreted frizzled-related protein 1 (SFRP1) on airway remodeling in chronic obstructive pulmonary disease (COPD). Methods Forty-five patients with stable COPD and 21 healthy controls were collected in Jiangsu Province Hospital from June 2014 to June 2016. The level of SFRP1 in serum was detected by ELISA. The expression of SFRP1, E-cadherin and α-smooth muscle actin (α-SMA) in human bronchial epithelial cells (16HBEs) were detected by Western blot. Results The level of SFRP1 in serum of the COPD patients was significantly higher than that in the healthy controls [(80.65 ± 15.01) pg/ml vs. (23.89 ± 2.59) pg/ml, P<0.05]. There were negative correlations between serum SFRP1 levels and lung function parameters (FEV 1, FEV 1%pred, and FVC) in the COPD patients (correlation coefficient r value were –0.368 9, –0.382 6 and –0.417 3, respectively, all P<0.05). The level of serum SFRP1 in the COPD smokers was significantly higher than that in the COPD non-smokers [(97.74 ± 21.95) pg/mlvs. (52.51 ± 14.87) pg/ml, P<0.05]. The expression of SFRP1 could be up-regulated by cigarette smoke extract in 16HBEs. The expression of E-cadherin of 16HBEs was up-regulated by recombinant SFRP1, but the expression of α-SMA of 16HBEs was down-regulated by recombinant SFRP1. Conclusion SFRP1 may be involved in the pathogenesis of airway remodeling of COPD by regulating the expression of E-cadherin and α-SMA of bronchial epithelial cells.

关键词: 慢性阻塞性肺疾病; 分泌型卷曲相关蛋白 1; 支气管上皮细胞

Key words: Chronic obstructive pulmonary disease; Secreted frizzled-related protein 1; Human bronchial epithelial cells

引用本文: 闫小逸, 贾嫚, 姜洁, 孟亚奇, 许家艳, 乔莹莹, 姚欣. 分泌型卷曲相关蛋白 1 在慢性阻塞性肺疾病气道重塑中的作用和机制. 中国呼吸与危重监护杂志, 2017, 16(5): 427-431. doi: 10.7507/1671-6205.201702038 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. 柳涛, 蔡柏蔷. 慢性阻塞性肺疾病诊断、处理和预防全球策略(2011 年修订版)介绍. 中国呼吸与危重监护杂志, 2012, 11(1):1-12.0
2. Vestbo J., Hurd SS., Agusti AG, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med, 2013, 187(4): 347-365.
3. Vogelmeier CF, Criner GJ, Martinez FJ, et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 Report. Respirology, 2017, 22(3): 128-149.
4. 庞才双, 曾妮, 申永春, 等. 慢性阻塞性肺疾病气道重塑机制及其研究进展. 西部医学, 2017, 29(1):135-140.0
5. Ota C, Baarsma HA, Wagner DE, et al. Linking bronchopulmonary dysplasia to adult chronic lung diseases: role of WNT signaling. Mol Cell Pediatr, 2016, 3(1):34.
6. Caprioli A, Villasenor A, Wylie L A, et al. Wnt4 is essential to normal mammalian lung development. Dev Biol, 2015, 406(2): 222-234.
7. Lehmann M, Baarsma HA, Konigshoff M. WNT signaling in lung aging and disease. Ann Am Thorac Soc, 2016, 13(Suppl 5): S411-S416.
8. Kawano Y, Kypta R. Secreted antagonists of the Wnt signalling pathway. J Cell Sci, 2003, 116(Pt 13): 2627-2634.
9. van Amerongen R, Berns A. Knockout mouse models to study Wnt signal transduction. Trends Genet, 2006, 22(12): 678-689.
10. Uhl FE, Vierkotten S, Wagner DE, et al. Preclinical validation and imaging of Wnt-induced repair in human 3D lung tissue cultures. Eur Respir J, 2015, 46(4):1150-1166.
11. Foronjy R, Imai K, Shiomi T, et al. The divergent roles of secreted frizzled related protein-1 (SFRP1) in lung morphogenesis and emphysema. Am J Pathol, 2010, 177(2): 598-607.
12. 丁宁, 王胜. 慢性阻塞性肺疾病发病机制最新研究进展. 临床肺科杂志, 2016, 21(1):133-136.0
13. Kneidinger N, Yildirim AO, Callegari J, et al. Activation of the WNT/beta-catenin pathway attenuates experimental emphysema. Am J Respir Crit Care Med, 2011, 183(6): 723-733.
14. Heijink IH, de Bruin HG, van den Berge M, et al. Role of aberrant WNT signalling in the airway epithelial response to cigarette smoke in chronic obstructive pulmonary disease. Thorax, 2013, 68(8):709-716.
15. Wang R, Ahmed J, Wang G, et al. Down-regulation of the canonical Wnt beta-catenin pathway in the airway epithelium of healthy smokers and smokers with COPD. PLoS One, 2011, 6(4):e14793.
16. Ren J, Wang R, Huang G, et al. sFRP1 inhibits epithelial-mesenchymal transition in A549 human lung adenocarcinoma cell line. Cancer Biother Radiopharm, 2013, 28(7): 565-571.
17. 景霞, 许建英. 吸烟对大鼠气道上皮细胞基质金属蛋白酶 9 表达的影响. 中国呼吸与危重监护杂志, 2009, 8(3):220-223.0
18. Wang A, Zsengeller ZK, Hecht JL, et al. Excess placental secreted frizzled-related protein 1 in maternal smokers impairs fetal growth. J Clin Invest, 2015, 125(11):4021-4025.
19. Bartis D, Mise N, Mahida RY, et al. Epithelial-mesenchymal transition in lung development and disease: does it exist and is it important? Thorax, 2014, 69(8):760-765.
20. Nowrin K, Sohal SS, Peterson G, et al. Epithelial-mesenchymal transition as a fundamental underlying pathogenic process in COPD airways: fibrosis, remodeling and cancer. Expert Rev Respir Med, 2014, 8(5):547-559.
21. Pain M, Bermudez O, Lacoste P, et al. Tissue remodelling in chronic bronchial diseases: from the epithelial to mesenchymal phenotype. Eur Respir Rev, 2014, 23(131): 118-130.